OSKARSHAMNS KOMMUN

OSKARSHAMNS HAMNBASSÄNG
SLUTRAPPORT ETAPP 3

Stockholm 2000-07-31
Uppdragsnummer 1154138000
Innehåll

1 Inledning
1.1 Bakgrund
1.2 Projekts syfte och mål

2 Genomförda utredningar

3 Sammanfattning
3.1 Förekomst och spridning av metaller
3.2 Riskbedömning
3.3 Åtgärdsförslag
3.4 Riskvärdering
3.5 Ansvarsförhållanden
3.6 Rekommendationer

4 Förekomst och spridning av metaller
4.1 Hamnbasångren
4.1.1 Sedimentens utredning
4.1.2 Mängd förorenade sediment
4.1.3 Föroreningsinnehåll i sedimenten
4.1.4 Områdesindelning med avseende på föroreningsinnehåll
4.2 Transporter
4.2.1 Provtagningsdata
4.2.2 Resultat
4.2.3 Utvärdering
4.3 Omkringliggande områden
4.4 Kust

5 Riskbedömning

6 Åtgärdsförslag
6.1 Problemformulering
6.1.1 Fördelar med muddring
6.1.2 Nackdelar med muddring
6.1.3 Fördelar med förflyttning och invallning
6.1.4 Nackdelar med förflyttning och invallning
6.1.5 Fördelar med täckning
6.1.6 Nackdelar med täckning
6.1.7 Kombinationer av muddring och övertäckning
6.1.8 Förflyttning av hamnverksamheten alternativt nedläggning av hamnen
6.2 Miljöeffekter av åtgärder
6.2.1 Muddring
6.2.2 Täckning / invallning
6.2.3 Deponering av förörenade sediment
6.2.4 Förflyttning av verksamhet
6.3 Förslag på efterbehandlingsåtgärder
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1</td>
<td>Muddring</td>
<td>17</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Övertäckning / invallning av sediment</td>
<td>17</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Utffyllnad vid kajkant</td>
<td>18</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Lämnade påverkade sediment</td>
<td>18</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Kontrollprogram</td>
<td>18</td>
</tr>
<tr>
<td>6.4</td>
<td>Effekter av behandling</td>
<td>18</td>
</tr>
<tr>
<td>6.5</td>
<td>Uppskattade kostnader</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>Riskvärdering avseende efterbehandling</td>
<td>19</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduktion till Cost-Benefit och ekologisk riskbedömning</td>
<td>19</td>
</tr>
<tr>
<td>7.2</td>
<td>Metodik för föreliggande analys</td>
<td>20</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Ekologisk riskbedömning</td>
<td>20</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Cost-Benefit analysis</td>
<td>20</td>
</tr>
<tr>
<td>7.3</td>
<td>Problemformulering för ekologisk riskbedömning</td>
<td>21</td>
</tr>
<tr>
<td>7.4</td>
<td>Analys</td>
<td>22</td>
</tr>
<tr>
<td>7.4.1</td>
<td>VBB VIAK – utredning daterad 2000-06-08</td>
<td>22</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Kemakta – utredning daterad 2000-07-06</td>
<td>23</td>
</tr>
<tr>
<td>7.5</td>
<td>Riskbedömning</td>
<td>24</td>
</tr>
<tr>
<td>7.6</td>
<td>Cost-Benefit analysis</td>
<td>25</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Definiering av nollalternativ och förändringsalternativ</td>
<td>25</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Analyser av kostnadseffektiviteten</td>
<td>26</td>
</tr>
<tr>
<td>7.7</td>
<td>Sammanfattning</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Ansvarsförhållanden</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Rekommendationer</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Referenser</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>Bilagor</td>
<td>32</td>
</tr>
<tr>
<td>Bilaga 1</td>
<td>Områdesindelning i hamnbassängen</td>
<td></td>
</tr>
<tr>
<td>Bilaga 2</td>
<td>Föroreningsklassning</td>
<td></td>
</tr>
<tr>
<td>Bilaga 3</td>
<td>Provtagningspunkter samt Flödestvärssnitt</td>
<td></td>
</tr>
<tr>
<td>Bilaga 4</td>
<td>VBB VIAKs åtgärdsförslag</td>
<td></td>
</tr>
<tr>
<td>Bilaga 5</td>
<td>Kemaktas modellindelning samt simuleringall</td>
<td></td>
</tr>
</tbody>
</table>
1 Inledning

1.1 Bakgrund

Genomförda undersökningar och utredningar har redovisats i separata underlagsrapporter (se kapitel 2 nedan) vilka ej biläggs denna slutrapport, utan VBB VIAK önskar härvid hänvisa till Oskarshamns kommun.

Arbetet har bedrivits i nära samråd med Oskarshamns kommun. Projektledare för kommunen har varit Jan Sandberg. En arbetsgrupp har även bildats med representanter från kommunens Tekniska kontor och Miljö- och hälsohyoggiskontor, Länsstyrelsen i Kalmar län (Miljöenheten) och som representanter för verksamheter inom hamnområdet SAFT, Oskarshamnsvarvet och Småländsvarvet.

Oskarshamns kommun har via Länsstyrelsen i Kalmar län erhållit anslag för det utförda arbetet från Naturvårdsverkets medel för efterbehandling.

1.2 Projektets syfte och mål

Syftet med det utförda arbetet har varit att i detalj kartlägga förekomst och omfattning av föroreningar, samt storlek och effekt av eventuell transport från hamnbassängen, samt med detta som underlag utföra såväl en ny riskbedömning som att ta fram en riskvärdering kopplad till ett åtgärdssförslag. Inom Etapp 3 har även en ny ansvarsutredning i enlighet med Miljöbalken (SFS 1998:808) utförts.

De här redovisade utredningarna skall komplettera tidigare undersökningar, samt i mer detalj redovisa föroreningssituationen. Resultaten
skall ligga till grund för ett slutligt ställningstagande beträffande behovet av efterbehandlingsåtgärder i hamnbassängen, samt utgöra grundmaterial för en eventuellt kommande detaljprojektering och tillståndsansökande till miljödomstolen avseende föreslaget arbete.

2 Genomförda utredningar

Inom huvudstudiens Etapp 1 och Etapp 2 har ett antal utredningar utförts, dessa är;

Etapp 1

➤ Huvudstudie för sanering av bottensediment i Oskarshamns hamn, samt orienterande markundersökningar i upplagsområden, kajer och före detta industriområden. VBB VIAK, 1996-10-29.

(Inom denna utredning utfördes tre delstudier, nämligen (i) Historisk inventering av tidigare industriverksamheter med syfte att klarlägga potentiella föroreningskällor, (ii) Översiktliga undersökningar av markens och grundvattnets miljöstatus i områden i anslutning till hamnbassängen, samt (iii) Detaljerade undersökningar av miljöstatusen i hamnbassängens bottensediment.)

Etapp 2

➤ Tredimensionell PHOENICS-modellering av vattenomsättningen och partikelspridning samt beräkning av föroreningsspridning, Terratema, oktober 1998.

➤ Undersökning av metalltillförsel till hamnbassängen. VBB VIAK, oktober 1998.

(Inom denna utredning utfördes två delstudier, nämligen (i) Beräkning av metalltransport med grundvatten till hamnbassängen, samt (ii) Beräkning av metalltransport med ytvatten via Döderhultsbäcken, samt tillförsel via kommunens avloppskomponent.)

(Inom denna utredning ingick även förutom en förenklad riskbedömning enligt MiFO även rekommendationer avseende åtgärdsbehov, åtgärdsbassäng och åtgärdsalternativ, samt översiktlig genomgång av ansvarsförhållanden.)

Inom den i denna rapport sammanfattade huvudstudiens **Etapp 3** har också ett antal utredningar utförts, dessa är;

Etapp 3

- Beräkning av vattenutbyte i Oskarshamns hamnbassäng under hela 1999. *SMHI, 2000-05-25*

- Modellering av metalltransporten i Oskarshamns hamn, Simulering av åtgärdsalternativ. *Kemakta, 2000-07-06.*
3 Sammanfattning

3.1 Förekomst och spridning av metaller

Mängden förorenade sediment beräknas enligt de senaste undersökningsarna vara 675.000 m³. Mängden metaller i sedimenten har även beräknats i ton vilka redovisas i tabell 1 på sida 9.

Hamnbassängen har utefters erhållna resultat delats in fyra klara ur-skiljbara underområden vilka även är väl avgränsade från varandra (se karta, bilaga 2).

Läckaget av metaller till Östersjön har beräknats och redovisas i tabell 2 på sida 10 och 11. Beräknade mängder överensstämmer i stort med tidigare beräkningar och kan sammanfattas i att cirka 20 kg Cd, 70 kg As, 1 kg Hg, 200 kg Pb, samt strax under 1 ton vardera av Cu och Zn läcker ut per år till omgivande kustzon.

3.2 Riskbedömning

3.3 Åtgärdsförslag

Ett huvudalternativ till efterbehandlingsåtgärd har tagits fram och redovisas på karta i bilaga 4. Alternativet kan i korthet sammanfattas enligt följande;

Muddring längs med farleden och på dess södra sida inom delområdena 8-12 (bilaga 1). Farleden muddras även på sin norra sida inom delområde 13 och 24. De kraftigt förorenade sedimenten norr om farleden i delområde 6-8 bör däremot täckas över för att bibehålla effekten av muddringen. För att förhindra spridning av förorenade sediment bör också delområde 1-3 täckas över på samma sätt som delområde 6-8.

3.4 Riskvärdering

För riskvärderingen har såväl en ekologisk riskbedömning som en Cost-Benefitanalys utförts.

Cost-Benefitanalys skulle lämpligast kunna översättas som en monetär värdering av effekter. Idén med analysen är att utreda om de investeringar som görs är likvärdiga med nyttan som uppstår av förändringen.

För att kunna utföra en Cost-Benefitanalys av en sanering av Oskarshamns hamnbassäng krävs en värdering av hamnen. Eftersom det är mycket svårt att sätta ett värde på hamnen har vi därför valt att utöver den traditionella Cost-Benefitanalysen även utföra en ekologisk riskbedömning av de åtgärder som föreslås utföras.

Den ekologiska riskbedömningen kan indelas i tre våld avskilda faser; problemformulering, analys och riskbedömning.

Enligt beräkningar av Kemakta bidrar de förorenade sedimenteren i den inre hamnbassängen med mellan 50% och 80% av det totala utsläppet till Östersjön i dagsläget. Efter föreslagna saneringsåtgärder bidrar de inre delarna till högst hälften av utsläppet till havet. Simuleringsmodell visar samtidigt att läckaget av metaler från sedimenteren kommer att fortsätta under lång tid om inga åtgärder genomförs.

Kemakta detaljerade simulering av effekterna vid olika åtgärder och den grova beräkning som även VBB VIAK utfört inom projektet är i stort och i huvuddelar samstämmiga. Detta faktum pekar på att det huvudsaksliga till efterbehandlingssågård som presenterats också bör ses som ett huvudalternativ då metalläckaget drastiskt minskas efter genomförandet.
I Cost-Benefitanalysen ställs hamnens värde i jämförelse med de faktiska kostnader som uppstår vid en sanering av hamnbassängen. Eftersom en sanering kan utföras på ett flertal olika sätt har vi uppskattat kostnaderna för flera av alternativen. De uppskattade kostnaderna kan därefter jämföras med det värde av hamnen som fastställts genom en samhällsanalys.

Samhällsanalysen har tagits fram genom intervjuer med personer på handelskammaren och berörda myndigheter, både regionalt och lokalt, samt industrier och rederier.

I vår analys av kostnadseffektiviteten har vi använt oss av de beräkningar som använts i den ekologiska riskbedömningen. Vi jämför kostnaderna som uppstår i samband med olika åtgärder i hamnbassängen. Vi har också beräknat kostnaden per kg reducerad metall för varje efterbehandlingsmetod. I tabell 4 på sida 27 redovisas resultatet vilket kan sammanfattas i att föreslaget huvudalternativ, i kombination med att en lokal deponi anläggs, är till en totalkostnad av cirka 260-320 miljoner kronor den mest kostnadseffektiva åtgärd som kan utföras avseende metallläckages från Oskarshamns hamnbassäng.

Resultatet av analyserna kring ekologisk risk och kostnadseffektivitet visar att Oskarshamns hamnbassäng bör saneras för att minska läckages av metaller till Kalmar sund.
3.5 Ansvarsförhållanden

Under de senaste 30 åren har SAFTs utsläpp till den inre hamnbas-
sången av processavloppsvatten och dagvatten innehållit åtskilliga
kusen kilo metaller. Även utsläpp från kommunens avloppsrenings-
verk har innehållit något tusentals kilo metaller. En icke obetydlig del
av dessa utsläpp har sedimenterats i de inre och yttre hamnbassång-
erna. SAFT och kommunen har som ansvariga för dessa utsläpp av
avloppsvatten bidragit till föroreningen och är därför ansvariga för
efterbehandlingen av sedimenten i hamnbassångerna.

Vid en jämförelse mellan de metallutsläpp som kan ha skett från
SAFT och avloppsreningsverket under den senaste 30-årsperioden
och de omfattande metallföröreningar som finns i sedimenten står det
klart att SAFTs och avloppsreningsverkets bidrag till föroreningen är
begränsad, dvs. dessa verksamheter har bidragit till föroreningen
endast i begränsad mån.

Sammantaget kan SAFT och kommunen inte undgå ansvar för de
efterbehandlingsåtgärder som erfordras. Hur stor del av det totala
ansvaret som kan vara rimligt att ålägga SAFT respektive kommunen
är vanskligt att uttala sig om. Tillsynsmyndigheten får i stället be-
stämma ett belopp som i någon mån kan svara mot verksamhetens
bidrag till föroreningen.

3.6 Rekommendationer

Resultatet av utförda utredningar visar att Oskarshamns hamnbas-
sång bör saneras. Utförda utredningar pekar även på att det huvud-
föreslag till efterbehandlingsåtgärd som presenterats ses som ett hu-
vudalternativ då metalläckaget drastiskt minskas efter genomföran-
det.

Det är dock möjligt att detta alternativ inte är det mest optimala för att
på det mest kostnadseffektiva sättet minska utläckaget av metaller till
Kalmar sund. Det kan inte uteslutas att det är möjligt att genom ytter-
liggare undersökningar minimera åtgärderna i hamnbassången och
ändå nå ett fullgott resultat med avseende på metalläckaget till Kal-
mar sund.

Detta arbete kan dock enligt vår mening ingå i en detaljprojektering av föreslaget huvudalternativ till efterbehandlingsåtgärd och bör startas omgående tillsammans med framtagandet av en tillståndssansökning till miljööverstyrelsen.

4 Förekomst och spridning av metaller

4.1 Hamnbassängen

4.1.1 Sedimentens utbredning

Vid den senaste undersökningen av sedimenten i Oskarshamns hamnbassäng delades hamnen upp i 25 delområden. Delområde 1-12 finns i inre hamnbassängen och delområde 13-25 i den yttre hamnbassängen (se karta, bilaga 1). De nya undersökningar som utförts är provtagning och analys av metaller, jordartsklassificering, bestämning av vattenkvot och glödförlust, sondering, avvattningsförsök samt batymetriska och geoskustiska mätningar. Totalt har 125 nya sedimentprover tagits för analys, fem i varje delområde.

Hambassängen är inte jämnt belagd med sediment utan det finns områden där botten består av sand, grus och sten i bottenytan. Dessa ytor sammanfaller väl med farleden i hamnbassängen.

4.1.2 Mängd förörenade sediment

Mängden förörenade sediment beräknas enligt de senaste undersökningarna vara 675.000 m³. Beräkningen stämmer väl överens med tidigare uppskattningar som gjorts till 500.000 - 700.000 m³. Mängden metaller i sedimenten har även beräknats i ton vilka redovisas i tabell 1.
Tabell 1 Beräknad mängd metaller i Oskarshamns hamnbassång.

<table>
<thead>
<tr>
<th>Metall</th>
<th>Mängd i inne hamnen (ton)</th>
<th>Mängd i yttre hamnen (ton)</th>
<th>Mängd totalt ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>25</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>Cd</td>
<td>2,5</td>
<td>0,3</td>
<td>2,9</td>
</tr>
<tr>
<td>Co</td>
<td>14</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Cr</td>
<td>8</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Cu</td>
<td>209</td>
<td>45</td>
<td>254</td>
</tr>
<tr>
<td>Hg</td>
<td>0,2</td>
<td>0,04</td>
<td>0,3</td>
</tr>
<tr>
<td>Ni</td>
<td>17</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Pb</td>
<td>134</td>
<td>27</td>
<td>162</td>
</tr>
<tr>
<td>Zn</td>
<td>474</td>
<td>101</td>
<td>574</td>
</tr>
<tr>
<td>Summa</td>
<td>884</td>
<td>183</td>
<td>1087</td>
</tr>
</tbody>
</table>

4.1.3 Föröreningssinnehåll i sedimenten

Endast ett delområde, nr 4 (bilaga 1), är mindre påvercat av de föröreningsskällor som medverkat till förörening av sedimenten i hamnbassången. Övriga delområden i inre hamnen tillhör klass 1 och 2 enligt Naturvårdsverkets Rapport 4918. Delområdena i yttre hamnen ligger till stor del inom klass 3, trolig påverkan av punktkälla.

4.1.4 Områdesindelning med avseende på föröreningssinnehåll

VBB VIAK har utfört fScandiaconsults undersökningar tolkat resultaten och delat in hamnbassången i fyra klart urskiljbara underområden vilka även är väl avgränsade från varandra (se kartor, bilaga 1 och 2);

- Underområde A: Delområde 1-5 betraktas som klass 2, stor påverkan av punktkälla, med undantag av delområde 4
- Underområde B: Delområde 6-12 betraktas som klass 1, mycket stor påverkan av punktkälla
- Underområde C: Delområde 13-17 samt 24 och 25 betraktas som klass 2
- Underområde D: Delområde 18-23 betraktas som klass 3, trolig påverkan av punktkälla

Utifrån denna indelning har förslag på möjliga efterbehandlingsåtgärder utarbetats vilka presenteras nedan i kapitel 6.
4.2 Transporter

De studerade ämnena är Cu, As, Ni, Zn, Hg, Co, Cd och Pb.

4.2.1 Provtagningsdata

Flödet är beräknat av SMHI över följande tvärsnitt (se även bilaga 3).

<table>
<thead>
<tr>
<th>Flödestvärsnitt</th>
<th>Läge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inlopp inre hamnbassäng</td>
</tr>
<tr>
<td>2</td>
<td>Yttre bassäng söder om Grimskallen (N Inloppet)</td>
</tr>
<tr>
<td>3</td>
<td>Yttre bassäng, mellan vågbrytarna</td>
</tr>
<tr>
<td>4</td>
<td>Yttre bassäng, öster om Tålleskär (S Inloppet)</td>
</tr>
</tbody>
</table>

4.2.2 Resultat

I tabellen nedan sammanställs den beräknade årstransporten för varje metall under 1999.

<table>
<thead>
<tr>
<th></th>
<th>Inre hamn netto (kg/år)</th>
<th>Yttre hamn netto (kg/år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>90</td>
<td>66</td>
</tr>
<tr>
<td>Cd</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>Co</td>
<td>15</td>
<td>42</td>
</tr>
</tbody>
</table>
4.2.3 Utvärdering

Jämfört med de beräkningar som gjordes 1998 är denna omgångs beräkningsresultat betydligt lägre. Skillnaden kan förklaras av mer omfattande provtagningsdata, till viss del andra lägen på provtagningspunkterna samt att provtagningsdata inte enbart är baserat på ytvatten. Transporten in till inre hamnbassängen baseras dessutom denna gång på halterna i yttre hamnbassäng och inte som förut av ett schablonmässigt "kustvärde".

När det gäller transporten in till yttre hamnbassängen används också medelvärdet för protagningen vid provpunkt G5 i beräkningarna (Grimskalldjupet utanför hamnen) för möjlighet till jämförelse. Generellt så är halterna vid G5 något högre än F6, varför nettoimporten för de flesta metaller blir något lägre än om F6 används. För jämförelse beräknades också transporten in till yttre hamnbassängen baserat på det "kustvärde" som användes under 1998 års beräkningar.

Man bör även vara medveten om att stora osäkerheter finns både i framtillståndet av koncentrationsmodellen och i själva beräkningsförfarandet. Det nu föreliggande mer omfattande dataunderlaget medför dock att resultatet av dessa beräkningar med stor sannolikhet bättre representerar verkliga förhållandena.

4.3 Omkringliggande områden

Omkringliggande områden har undersöks avseende mark under Etapp 1 och avseende grundvatten under Etapp 2. Dessa undersökningar kan sammanfattnas i följande;

Mark

Utförda analyser av jordprover visar att flera metaller allmänt förekommer i förhöjda halter, i synnerhet söder om hamnbassängen. Det är i första hand topparhalterna i jorden som är förhöjda men även
zink- och blyhalter är generellt höga. De förhöjda metallhalterna torde helt eller delvis härstamma från verksamheten vid det nedlagda Kopparverket.

Norr om hamnbassängen har det noteras förhöjda halter av bly, koppar och zink. Ackumulatorstillverkningen vid SAFT har angetts som trolig källa för denna påverkan.

Då det endast är fyra metaller (koppar, krom, bly och zink) som studerats mer noggrant kan det inte uteslutas att även andra metaller förekommer i höga halter i jordlagren.

Grundvatten

Totalt åtta delområden har avgränsats med hjälp av bedömda lägen för lokala vattendelare samt hydrauliska konduktiviteter. Metallflödet till hamnbassängen per år via grundvatten har beräknats till:

<table>
<thead>
<tr>
<th>Metall</th>
<th>Mängd kg/år</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>0,8</td>
</tr>
<tr>
<td>Cd</td>
<td>1,5</td>
</tr>
<tr>
<td>Co</td>
<td>1,9</td>
</tr>
<tr>
<td>Cr</td>
<td>0,2</td>
</tr>
<tr>
<td>Cu</td>
<td>6,6</td>
</tr>
<tr>
<td>Hg</td>
<td>0,003</td>
</tr>
<tr>
<td>Ni</td>
<td>15</td>
</tr>
<tr>
<td>Pb</td>
<td>0,4</td>
</tr>
<tr>
<td>Zn</td>
<td>28</td>
</tr>
</tbody>
</table>

4.4 Kust

När det gäller metallhalter i kustzonen utanför Oskarshamn har detta inte studerats inom någon av Huvudstudiens tre etapper. Trots detta finns, genom andra studier, klara indikationer på att de förorenade sedimenten påverkar kustzonen långt utanför hamnbassängen.

Tre referenser vilka kan anges är;

- SNV PM 724, 1975 – Undersökningar vid muddring i Oskarshamn hamn, 1973-74. I denna utredning påvisas stor anrikning av metaller (Hg, Cd, Cu, Pb och Zn) i utsatta blåmmuslor i samband med sugmuddring utanför Kopparverkskajen och återdeponering i Månskensviken. Anrikning skedde såväl inom hamnen som i de yttersta provlokalerna (burarna) vilket visade på en stor påverkan av ett mycket stort vattenområde i samband med en typ av arbeten (muddring) som återkommit kontinuerligt under åren.

metallnedfallet kring Oskarshamn dramatiskt förändrats (minskt) när SAFT installerade ny reningsanläggning och Kopparverket lagts ned. Utredningens slutsatser pekar samtidigt indikativt på hur belastningen av hamnbassängen och kustzonen samtligt minskat på liknande sätt av samma orsaker.

Vi utesluter inte att det finns betydligt mer studier som tillsammans utgör tydliga indikationer på omfattning och storlek av metallläckaget från de förorenade bottensedimenten i Oskarshamns hamnbassäng. En sökning och sammanställning av resultat avseende påverkan inom kustzonen är önskvärd.

5 Riskbedömning

Ny riskklassning har nu genomförts enligt NV Rapport 4918 (Metodik för Inventering av Förorenade Områden) med syfte att värdera om en omklassning bör ske efter den nu mer detaljerade kunskap som finns för Oskarshamns hamnbassäng. Denna klassning stärker den tidigare genom att de erhållna värdena för läckaget till Östersjön nu är betydligt bättre underbyggda. Objektet kvarstår därmed i Klass 1 (Mycket stor risk).
6 Åtgärdsförslag

6.1 Problemformulering
Detta delmoment har haft som syfte att sammanfatta aktuella möjligheter som finns för att sanera eller minska de miljörisken som uppstår i samband med spridning av metaller från de förorenade sedimenten. De olika alternativens tekniska utförande, för- och nackdelar har beskrivits i VBB VIAKs delrapport (daterad 2000-05-31). Kostnader för olika alternativ har också redovisats. VBB VIAK har slutligen lämnat ett förslag till val av efterbehandlingsåtgärd vilken presenteras nedan.

De alternativ som har ansetts kunna komma ifråga vid en sanering av Oskarshamns hamnbassäng har varit följande;

- Mudring samt deponering av de avvattnade sedimenten
- Mudring samt efterbehandling av de avvattnade sedimenten
- Mudring samt återfyllning och invallning av sedimenten i närliggande vik alternativt vattenområde
- Övertäckning av sedimenten i hamnbassängen
- Kombinationer av mudring och övertäckning
- Flytta hamnverksamheten till annan plats, företrädesvis till yttre delen av hamnen
- Stänga hamnen för den verksamhet som bidrar till spridningen ut i Kalmar sund, nämligen trafik med stora fartyg

Alternativens för- och nackdelar kan kort sammanfattas enligt följande;

6.1.1 Fördelar med mudring
Fördelarna med mudring är att det är en vedertagen teknik varför det finns framtagna metoder för hur arbetet skall utföras. Det finns flera kända stora saneringar som gjorts med tekniken. När mudringen av de förorenade massorna är genomförd krävs inga ytterligare miljöinsatser i hamnen.

6.1.2 Nackdelar med mudring
Vid mudring grumlas vattnet kraftigt. Även om arbetet utförs inom ett avskärmat område finns det risk att partiklar från sedimenten sprider
sig till omgivande vattenmassor. Problem uppstår även då arbeten måste utföras vintertid. Farbygstrafiken måste begränsas i samband med muddringsarbete i hamnbassängen.

6.1.3 Fördelar med förflyttning och invallning

Fördelarna med förflyttning och invallning av sedimenten i skyddad vik är att kostnader för transport och behandling undviks. Tekniken utgör inget hinder i framtiden att nå sedimenten om kostnadseffektiva lösningar utarbetas för omhändertagande av de metaller som finns i sedimenten.

6.1.4 Nackdelar med förflyttning och invallning

Det finns en risk att föroreningarna sprids i samband med förflyttning. Det är inte heller omöjligt att invallningen skadas och att föroreningar läcker ut till omgivande vattenmassor.

6.1.5 Fördelar med täckning

Fördelar med täckning är att det sker minimalt med spridning av par-tiklar från sedimenten jämfört med muddring. Man slipper också kost-samma transportkostnader samt belastar heller inget annat omräde miljömässigt som t.ex. vid deponering av sedimenten på land. Det uppkommer inga kostnader för behandling av sedimenten.

6.1.6 Nackdelar med täckning

Nackdelar med att täcka in sedimenten på plats är att det finns en risk att det ändå läcker ut föroreningar till omgivande vattenmassor. Troligen inskränks verksamheten vid kaj bl.a. genom att ankring inte kan tillåtas inom område som täcks med betongfyllde geotextil. Underhållsarbeten på botten i form av muddring kan hindras genom en betongtäckning. Det är möjligt att muddring endast kan komma att kunna utföras med sugmudderverk.

6.1.7 Kombinationer av muddring och övertäckning

Det är möjligt att kombinera de tekniker som beskrivits ovan och i förekommande fall välja den bästa tekniken utifrån de förutsättningar som finns på varje plats. De fördelar och nackdelar som är behämtade med de olika teknikvalen finns beskrivna ovan. En fördel med att kombinera olika tekniker är att man kan utnyttja området för pilotstudi-er och samtidigt dra lärd som inför andra liknande projekt.
6.1.8 Förflyttning av hamnverksamheten alternativt nedläggning av hamnen

En möjlighet är att förbuda trafik av stora fartyg i inre hamnen. Detta alternativ måste naturligtvis beaktas ur såväl samhällsekonomisk som företagsekonomisk synvinkel.

6.2 Miljöeffekter av åtgärder

6.2.1 Muddring

Största miljöeffekten vid muddring är risken för spridning av sediment till övriga vattenmassor. Bottenfaunan kommer precis som vid övertäckning lida skada men snabbt återhämta sig.

6.2.2 Täckning / Invallning

Den bottenfauna som trots de höga föroreningshalterna lyckats överleva i hamnbassängen kommer att för en tid försvinna efter en övertäckning av sedimenten. Bottenfaunan kommer dock snabbt att återhämta sig efter övertäckningen.

Några miljöeffekter förväntas inte vid invallning av sediment så länge invallningen utförs på sådant sätt att läckage till omgivande vattenmassor förhindras. Viss grumling kan uppstå i samband med spottning.

6.2.3 Deponering av förörenade sediment

Vid deponering av sediment belastas miljön med lakvattenutsläpp. Mängder avgaser som släpps ut i samband med transporter är helt avhängigt hur långt sedimenten måste transporteras. Därför är det av största vikt att lösa deponifrågan lokalt. Landskapsbilden påverkas vid anläggandet av en deponi.
6.2.4 Förflyttning av verksamhet

Inga miljöeffekter uppstår av åtgärden, det kommer istället främst att märkas ekonomiskt för kommun och berörda företag.

6.3 Förslag på efterbehandlingsåtgärder

Karta över hammområdet med förslag på efterbehandlingsåtgärder redovisas i bilaga 4.

6.3.1 Muddring

VBB VIAK föreslår att muddring sker längs med farleden och på dess södra sida inom delområdena 6-12 (bilaga 1). Farleden muddras även på sin norra sida inom delområde 13 och 24. Muddringen utförs för att förhindra att de förorenade sedimenten sprids av de stora fartag som trafikerar farleden. Eventuellt kan även delområde 5 (bilaga 1) komma i fråga för muddring. Mångd muddrade massor beräknas vara ca 200,000 m³ då delområde 5 också muddras (ca 179,500 m³ utan delområde 5). Mångden muddermassor från detta område innebär att mängden metaller i hamnbassängen minskas med ca 450 ton. Vid en avvattningsprocess beräknas TS-halten i det avvattnade sedimentet uppnå ca 40% vilket motsvarar ca 130.000 ton massor som skall omhändertas.

6.3.2 Övertäckning / invallning av sediment

De kraftigt förorenade sedimenten norr om farleden i delområde 6-8 (bilaga 1) bör täckas över för att bibehålla effekten av muddringen. Detta kan med fördel ske med betongfyllda madrasser.

För att förhindra spridning av förorenade sediment bör också delområde 1-3 täckas över på samma sätt som delområde 6-8. Eventuellt skulle delområde 1 kunna fyllas ut med muddermassor. Delområde 1 skulle kunna rymma ca 67.000 m³ avvattnade sediment. En fortsättning för att använda muddermassor på detta sätt är att det tillåts avvattnas till så stor del att nästan allt vatten är borta. Delområde 1 skulle kunna rymma alla de muddrade massor som föreslås muddras i vårt förslag. Detta gäller under den fortsättning att massorna avvattnas så endast 20% av den ursprungliga volymen kvarstår.
6.3.3 Utfyllnad vid kajkant

För att underlätta muddringen i 10 och 12 (bilaga 1) är det möjligt att göra kajkantslinjen längs delområde 10 och 12 rakare. Invallning av sediment sker genom att sätta spont längs med den nya kajkanten som skall anläggas. Spont sätts även längs den existerande kajkanten för att förhindra sättningar under arbetet. Även muddrade massor från annan plats i hamnbassängen ryms vid kajen. En ny kaj uppförs på sedvanligt sätt med undantag av att kajkanten tätas för att förhindra diffust läckage av metaller.

Metoden kan med fördel användas även på andra områden i hamnen.

6.3.4 Lämnda påverkade sediment

6.3.5 Kontrollprogram

Oavsett val och eventuell begränsning av efterbehandlingsåtgärd så bör ett kontrollprogram upprättas. Detta kontrollprogram bör gälla under såväl entreprenadarbetet som efter det att efterbehandlingen är genomförd.

6.4 Effekter av behandling

Vid åtgärder som innebär att samtliga delområden (utom delområde 4) i inre hamnen åtgärdas kommer täckaget av metaller från inre hamnbassängen till den yttre att minska drastiskt – se vidare under kapitel 7.

6.5 Uppskattade kostnader

I tabell 3 nedan sammanfattas de kostnadsuppskattningar som föreslagits ovan.
Tabell 3 Sammanfattning av kostnadssuppskattningar för de åtgärder som föreslås i Oskarshamns hamnbassång

<table>
<thead>
<tr>
<th>Teknik</th>
<th>Avser delområde (nr)</th>
<th>Kostnad (miljoner kr)</th>
<th>Investering (miljoner kr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muddring</td>
<td>Halva 8, 9-12 samt halva 13 och 24</td>
<td>90</td>
<td>50-100</td>
</tr>
<tr>
<td>Muddring</td>
<td>Som ovan samt även delområde 5</td>
<td>100</td>
<td>50-100</td>
</tr>
<tr>
<td>Täckning</td>
<td>1-3, 6-7 samt halva 8</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Spontning/dränering för ny kajkant</td>
<td>Delar av nr 10 och 12</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Deponering hos SAKAB</td>
<td>Muddrade massor från delområden redovisade ovan</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>Anläggande av Klasse 1 deponi</td>
<td>Muddrade massor från delområden redovisade ovan</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

För samtliga åtgärdsförslag krävs att tillstånd erhålls från miljödomstolen. En tillståndsansökan skall innehålla en miljökonsekvensbeskrivning. Vi uppskattar kostnaderna för tillståndsansökan inklusive detaljprojektering samt upprättande av kontrollprogram till ca 5 miljoner kronor.

7 Riskvärdering avseende efterbehandling

7.1 Introduktion till Cost-Benefit och ekologisk riskbedömning

Cost-Benefit skulle lämpligast kunna översättas som en monetär värdering av effekter. Det innebär att de kostnader och nyttor som uppkommer vid en förändring i t.ex. samhället värderas i monetära termer. Idén med analysen är att utreda om de investeringar som görs är likvärdiga med nytan som uppstår av förändringen.

För att kunna utföra en Cost-Benefitanalys av en sanering av Oskarshamns hamnbassång krävs en värdering av hamnen. Eftersom det är mycket svårt att sätta ett värde på hamnen har vi därför valt att utöver den traditionella Cost-Benefitanalysen även utföra en ekologisk riskbedömning av de åtgärder som föreslås utföras. Det är
alltid en fördel att utföra en ekologisk riskbedömning inom projekt där kostnaderna är stora. Efter en noggrann studie av risker och effekter är det möjligt att minimera kostnaderna när åtgärdsfasen näs.

7.2 Metodik för föreliggande analys

7.2.1 Ekologisk riskbedömning

Den ekologiska riskbedömningen kan indelas i tre väl avskilda faser; problemformulering, analys och riskbedömning.

7.2.2 Cost-Benefitanalys

Samhällsanalysen har tagits fram främst intervjuer med personer på handelskammaren och berörda myndigheter, både regionalt och lokalt, samt industrier och rederier. Samhällsanalysen presenteras i separat rapport (daterad 2000-06-21).

7.3 Problemformulering för ekologisk riskbedömning

Målet och syftet med projektet "Oskarshamns hamnbassäng" är att minska de utläckande metallhaltarna till Kalmar sund. I den ekologiska riskbedömningen utreds om de åtgärder som planeras vidtas uppnår detta mål. Riskbedömningen är upplagd på samma sätt som Cost-Benefitanalysen då varje åtgärd för sig utsätts för en riskbedömning.

Vad som hittills inte undersöks inom huvudstudien av Oskarshamns hamnbassäng är vilka risker som finns med läckage av tungmetaller ut till Kalmar sund. Behov finns av ytterligare undersökningar, denna gång koncentrera till den biotop som utsätts för det läckage som förekommer från Oskarshamns hamnbassäng. Det bör undersökas vilket sorts ekosystem som finns i Kalmar sund samt om det är påverkat av miljögifter och i sådana fall vilka. Helst bör hela ekosystemet undersökas och inte enbart specifika arter. Om det redan finns tillräckligt noggranna studier av ekosystemet i Kalmar sund är nästa steg att verifiera källan eller källorna till tillståndet i Kalmar sund. Det har inte gjorts några undersökningar av hur metallerna är bundna till sedimenten, är de hårt bundna till sedimenten är de inte biologiskt aktiva och således inte farliga för organismerna i vattnet. Ytterligare undersökningar skulle alltså kunna vara:

- Vilket sorts ekosystem som finns i Kalmar sund
- Källan/källorna till tillståndet i Kalmar sund
- Metallernas bindningsform till sedimenten
7.4 Analys

7.4.1 VBB VIAK – utredning daterad 2000-06-08

Beräkningar har gjorts för att studera hur nettotransporten per år från yttre hamnen till Kalmar sund förändras om åtgärder i inre hamnen vidtas i form av muddring eller täckning. Fem olika fall har studerats:

1. Övertäckning av delområde 1-3
2. Övertäckning av delområde 6-7 samt halva delområde 8
3. Muddring av delområde 9-12 samt halva 8
4. Muddring av delområde 9-12 samt halva 8 och utöver det även delområde 5
5. Samtliga av VBB VIAK föreslagna åtgärder genomförs

I beräkningarna förutsätts att metallerna sprids på samma sätt oavsett i vilken del av inre hamnbassängen som de härstammar från. Det bör noteras att studien är gjord för att i grova drag få en uppskattning om de effekter som kan uppnås i samband med åtgärder i den inre hamnbassängen.

Beräkningarna kan sammanfattas enligt följande;

Fall 1 - Övertäckning av delområde 1-3; Kraftig reduktion av Ni, Cd och Zn. Det räcker med denna åtgärd om enda önskan är att undvika spridning av Cd och Zn. Åtgärden har liten effekt på övriga metaller.

Fall 2 - Övertäckning av delområde 6-7; samt halva delområde 8; Läckage av As och Zn reduceras totalt. Övriga metaller utom Co och Hg reduceras kraftigt.

Fall 3 - Muddring av delområde 9-12 - samt halva 8; Läckage av As och Zn reduceras helt. Övriga metaller utom Hg reduceras kraftigt.

Fall 4 - Muddring av delområde 9-12 samt halva 8 och utöver det även delområde 5; Läckage av As och Zn reduceras helt. Övriga metaller utom Hg reduceras kraftigt.

Fall 5 - Samtliga av VBB VIAKs föreslagna åtgärder genomförs; Läckaget av As, Cd, Cr, Cu, Ni, Pb samt Zn reduceras totalt. Co och Hg reduceras kraftigt.
7.4.2 Kemakta – utredning daterad 2000-07-06

Som resultat av det åtgärdsförslag som tagits fram och den riskvärdering som utförts med denna som grund, önskades en mer detaljerad simulering av miljöeffekterna vid olika åtgärder. Därför lämnades sent ett deluppdrag till Kemakta (och SMHI) att modellera tungmetalltransporterna i hamnbasängen.

Kemakta har i sitt arbete tagit fram två jämviivtsmodeller för spridningen av metaller. Transportmodellerna beskriver läckaget av metaller från sedimenten (pga. sedimentation, resuspension och diffusion) och den fortsatta transporten i vattnet mot hamnuttomperna till havet. Transporten i vattnet baseras på strömningsdata för en västlig och en ostlig vindsituation som tagits fram av SMHI.

Med den ena modellen har nollalternativet, tre huvudåtgärdsalternativ samt ytterligare fem åtgärder i den inre hamnen simulerats för 8 olika metaller och två vädersituationer (se även bilaga 5). Åtgärdsalternativen bygger på de av VBB VIAK föreslagna åtgärderna. De studerade metallerna är As, Cd, Pb, Co, Zn, Hg, Ni och Cu.

För att följa långtidsförändringar av halter i vatten och sediment, utsläpp till Östersjön, mm. gjordes simuleringar med en dynamisk transportmodell. På grund av denna modells komplexitet och långa simuleringstider gjordes endast ett urval av beräkningar (4 st.) för en vald metall (koppargruvorna).

Simuleringarna för nollalternativet visar enligt Kemaktas beräkningar att ca 25 kg Cd, 50 kg Co, 70-100 kg As, 500-650 kg Pb, 320 kg Ni, 770-1000 kg Cu, 1 kg Hg och upp till 1400 kg Zn sprids till Östersjön från Oskarshamns hamnbasäng varje år1. Variationerna beror på om den förhärskande vindriktningen är västlig eller ostlig. För den ostliga vindsituationen är utsläppet till Östersjön högre.

Modellsimuleringarna av åtgärdsalternativen A och B (vilka överensstämmer med förslag i kapitel 6.3) visar att reduktionen av utsläppet från hamnen är liknande för de två alternativen. Skillnaden mellan A och B är att yetterligare område muddras för alternativ B (se 6.3.1).Reduktionen av metallutslaget är störst för As och Zn, vars sedimenthalter efter muddring är låga. För As blir utslaget efter åtgärder minimal eller negativt, för Zn är reduktionen mer än 70%. Utslaget av Pb och Cu reduceras med mer än 50%. För Cd, Co och Ni är reduk-

1 Beräknade mängder stämmer väl överens med de transportberäkningar som redovisas i kapitel 4.2.
tionen mellan 40 och 50%. För Hg är reduktionen av utföldet ca 30%. Modellsimuleringarna vid ostlig vind ger en liknande reduktion av utsläppet som vid västlig vind. Reduktionen av As och Zn är dock inte lika stor som för fallet med västlig vind och nettotransporten av dessa metaller kommer att vara riktad ut ur hamnen.

Åtgärdsalternativ C (muddring istället för täckning av aktivt hamnområde, se 6.3.2) ger ett något högre utsläpp än alternativen A och B beroende på resuspensions- och diffusionsprocesser.

Åtgärdsalternativen D1-D7 omfattar enbart muddring och/eller täckning av områden i den inre hamnbassängen och ingen muddring av farleden i den yttre bassängen. Dessa åtgärder leder till ett högre utsläpp än för åtgärdsalternativ A-C och ger en indikation om nytan med att muddra även delar av den yttre hamnen.

Enligt modellsimuleringarna bidrar de förorenade sedimenten i den inre hamnbassängen med mellan 50% och 80% av det totala utsläppet till Östersjön i dagsläget (för en västlig vindsituation). Efter genomförda saneringsåtgärder bidrar de inre delarna till högst hälften av utsläppet till havet. Den dominerande spridningsprocessen från sedimenten i Oskarshamns hamn är resuspension av sedimenterade partiklar. Diffusionen är av viss betydelse för Ni, As och Cd men förhållandevis oviktig för läckaget av de övriga metallen.

Simuleringarna med den dynamiska modellen visar att läckaget av metaller från sedimenten kommer att fortsätta under lång tid om inga åtgärder genomförs. Beräkningarna gjordes för en 5-årsperiod med den långsamma reduktionen av utsläppet (20% för Cu) kan extrapoleras ytterligare några år i framtiden. Halterna i yrsedimenten sjunker relativt långsamt under den studerade perioden. Inom vissa delar av den inre delen av hamnen ökar koncentrationen något i sedimenten på grund av att sedimentationen av material och föröreningar är högre än resuspensionen. Efter genomförandet av åtgärdsalternativ A kommer sedimenthalterna att minska i alla områden utom de som täckts. I de senare områdena stiger halterna enligt beräkningarna något på grund av en omfördelning av förörenat suspenderat material i hamnen.

7.5 Riskbedömning

Kemaktas detaljerade simulering av effekterna vid olika åtgärder och den grova beräkning som VBB VIAK utfört är i stort och i huvuddelar samstämmiga. Detta faktum pekar på att det huvudförslag till efterbe-
handlingsåtgärd som presenterats i kapitel 6.3 verkligen också bör
ses som ett huvudalternativ då metallläckaget drastiskt minskas efter
genomförandet.

Det är dock möjligt att Fall 5/Fall A (enligt 7.4.1 respektive 7.4.2 ovan)
inte är det mest optimala för att på det mest kostnadseffektiva sättet
minska utläckaget av metaller till Kalmar sund.

I första hand bör metallernas effekter på ekosystemet studeras nog-
grant. Detta kräver för att kunna veta vilka metaller som i första hand
skall reduceras. Därefter bör sedimentens föroreningssinnehåll stude-
ras ytterligare för att på bästa sätt minimera de mängder som mudd-
ras eller de ytor som täcks över. Noggrannare analys av metalltrans-
porter in och ut ur såväl inre som yttre hamnen samt Kalmar sund bör
också utföras. Detta arbete kan dock enligt vår mening ingå i en de-
talprojektering av föreslaget huvudalternativ till efterbehandlingsåt-
gärd.

7.6 Cost-Benefit analys

7.6.1 Definiering av nollalternativ och förändringsalternativ

Nollalternativet är att hamnen behålls i sitt nuvarande utförande och
att färje- och godstrafik fortsätter som tidigare. Förändringsalternativ
är att hamnbassängen saneras i enlighet med de åtgärdsförslag som
framlagts av VBB VIAK i rapport daterad 2000-05-31 alternativt att
hamnen läggs ned eller verksamheten flyttas till annan plats.

Nollalternativ - Att stanna vid nollalternativet och därmed låta verk-
samheten pågå som den gjort tidigare innebär att förorenade sedi-
ment fortsätter att läcka till Kalmar Sund. Regeringens mål att åtgärda
de lokaler som är klassade som riskklass 1 enligt NV inom 20 år
kommer inte uppnås. Det uppstår inga kostnader om nollalternativet
väljs.

Förändringsalternativ A - Muddring av samtliga förorenade massor
samt deponering på SAKAB:s deponi Norrtorp. Kostnaderna för detta
alternativ uppgår till ca 1,2 miljarder kronor.

Förändringsalternativ B - Muddring och efterbehandling av samtliga
förorenade massor samt deponering hos SAKAB. Kostnaderna för
detta alternativ uppgår till ca 2 miljarder kronor.
Förändringsalternativ C - Muddring av samtliga förorenade massor samt deponering på lokal deponi. Kostnaderna för detta alternativ uppgår till ca 453 miljoner kronor.

Förändringsalternativ D - Muddring och efterbehandling av samtliga förorenade massor samt deponering på lokal deponi. Kostnaderna för detta alternativ uppgår till ca 1,4 miljarder kronor.

Förändringsalternativ E - Täckning av samtliga förorenade massor. Kostnaderna för detta alternativ uppgår till ca 300 miljoner kronor.

Förändringsalternativ F - Muddring av delområde 5, 8-12 samt delar av områdena 13 och 24 (se 6.3 ovan). Muddermassorna deponeras på lokal deponi. Kostnaderna för detta alternativ uppgår till ca 122 miljoner kronor.

Förändringsalternativ G - Täckning inom delområdena 1-3, 6-7 samt halva 8 (se 6.3 ovan). Kostnaderna för detta förslag uppgår till ca 80 miljoner kronor.

Förändringsalternativ H - Samtliga av VBB VIAKs åtgärdsförslag enligt 6.3. Deponering sker på lokal deponi eller hos SAKAB i Norrtorp. Kostnader för detta alternativ då investeringskostnader medräknas är 289 miljoner kronor (alternativ 1) respektive 448 miljoner kronor (alternativ 2) om deponering sker hos SAKAB.

Förändringsalternativ I - Hamnverksamheten läggs ned. VBB VIAKs samhällsanalyser av hamnen har dock visat att hamnen har stort värde för kommunen och regionen varför detta alternativ tills vidare förkastas.

Förändringsalternativ J - Hamnverksamheten läggs ned och flyttas till annan ort eller plats. Kostnaden för detta är lägst 500 miljoner kronor. VBB VIAKs samhällsanalyser av hamnen har dock visat att hamnen är mycket värdefull för kommunen och regionen varför detta alternativ tills vidare förkastas.

7.6.2 Analys av kostnadseffektiviteten

I vår analys av kostnadseffektiviteten har vi använt oss av de beräkningar som använts i den ekologiska riskbedömningen. Vi jämför kostnaderna som uppstår i samband med olika åtgärder i hamnbas-sägningen. Vi har också beräknat kostnaden per kg reducerad metall för
varje efterbehandlingsmetod. Tabell 4 nedan redovisar resultatet effektivitetsanalysen.

Tabell 4 Jämförelse mellan de olika åtgärdsförslagens effekt, totalkostnad sam kostnad per reducerad kg metall.

<table>
<thead>
<tr>
<th>Ätgärdsalternativ</th>
<th>Effekt</th>
<th>Kostnad (kr)</th>
<th>Kostnad (kr/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Full</td>
<td>1100×10^6</td>
<td>1030</td>
</tr>
<tr>
<td>B</td>
<td>Full</td>
<td>2200×10^6</td>
<td>2060</td>
</tr>
<tr>
<td>C</td>
<td>Full</td>
<td>453×10^6</td>
<td>420</td>
</tr>
<tr>
<td>D</td>
<td>Full</td>
<td>1400×10^6</td>
<td>1310</td>
</tr>
<tr>
<td>E</td>
<td>Full</td>
<td>300×10^6</td>
<td>280</td>
</tr>
<tr>
<td>F</td>
<td>Full för As och Zn, kraftig reducierung av övriga metaller</td>
<td>122×10^6</td>
<td>300</td>
</tr>
<tr>
<td>G</td>
<td>Full för As och Zn, kraftig reducierung av övriga metaller</td>
<td>80×10^6</td>
<td>160</td>
</tr>
<tr>
<td>H (alt 1)</td>
<td>Full</td>
<td>289×10^6</td>
<td>340</td>
</tr>
<tr>
<td>H (alt 2)</td>
<td>Full</td>
<td>448×10^6</td>
<td>530</td>
</tr>
</tbody>
</table>

Resultatet som redovisas i tabell 4 visar att H, alternativ 1 samtliga VBB VIAKs åtgärdsförslag då lokal deponi anläggs, är den mest kostnadseffektiva åtgärd som kan utföras i Oskarshamns hamnbassång. Alternativ E, att helt täcka in samtliga sediment i hamnbassången, är också en mycket kostnadseffektiv åtgärd men åtgärden innebär då att stora restriktioner måste sättas för båttrafiken i hamnen.

7.7 Sammanfattning

Resultatet av analyserna kring ekologisk risk och kostnadseffektivitet visar att Oskarshamns hamnbassång bör saneras för att minska läckaget av metall av till Kalmar sund. Noggrannare undersökningar bör dock eventuellt först utföras för att fastställa hur ekosystemet i Kalmar sund påverkas av metallläckaget. Metalternas bindningsform till sedimenten bör undersökas liksom om det finns ytterligare källor som bidrar med metaler till Kalmar sund.

Vid en efterbehandling av sedimenten i hamnbassången är det mest kostnadseffektivt att efterbehandla enligt de metoder som föreslagits av VBB VIAK i rapporten Åtgärdsförslag, daterad 2000-05-31. Det kan dock inte uteslutas att det är möjligt att genom ytterligare under-
sökningar minimera åtgärderna i hamnbassängen och ändå nå ett fullgott resultat med avseende på metalläckaget till Kalmar sund.

8 Ansvarsförhållanden

Följande är ett utdrag ur den ansvarsutredning i enlighet med miljöbal-
ken (SFS 1998:808) som utförts av Mårten Bengtsson på Advokatfir-
man Åberg & Co (daterad 2000-03-21).

Industriell verksamhet i anslutning till Oskarshamns hamn har sedan
slutet av 1800-talet förörenat bottensedimenten i hamnen. Även
kommunens utsläpp av avloppsvatten har bidragit till dagens föreor-
eningssituation. Av utförda underökningar framgår att metallerna i se-
dimenten kan utgöra ett hot mot vattenlevande djur samt växter i an-
gränzande vattenområden. Eventuellt kan också människor expone-
ras i ett längre perspektiv genom bioackumulation. Sammantaget har
det därför funnits vara motiverat att vidta åtgärder för att minska till-
gångligheten på metallerna.

Varje verksamhetsutövare som har bidragit till föröreningen av hamn-
bassängen i Oskarshamns hamn har i princip ett ansvar för objektets
afterbehandling. För tiden före 1970 finns det i princip inga uppgifter
om hur stora utsläpp av metaller som tillförts hamnbassängen. Vid
ansvarsbedömningen tas därför endast hänsyn till det bidrag till fö-
öreningen som kan ha uppkommit efter den 30 juni 1969.

Ef tersom verksamheten har upphört före den 1 juli 1969 är inte reg-
lerna i miljöbalken om verksamhetsutövarens ansvar för efterbehand-
ling tillämpliga på Kopparverket. Hamnverksamheten har inte bidra-
git till metallföröreningarna i sedimenten, varför något efterbehand-
lingsansvar inte är aktuellt för den som har bedrivit hamnverksamhet-
en.

Det är inte klartlagt att Oskarshamnsvarvet Sweden ABs verksamhet
eller tidigare verksamhetsutövare – som bedrivit verksamhet efter den

2 Kopparverket har konstaterats vara den största bidragsgivaren till den nu
förskakande metalloblastningen.

3 Här är det främst två olika verksamheter som skulle kunna vara aktuella,
nämnligen muddringsarbeten och fartygstrafiken. Då dessa är av betydelse
för spridning kan det dock förutsättas att det vid kommande tillståndsprö-
ningar enligt miljöbalken kan bli aktuellt med olika skyddsåtgärder, be-
gränningar och försiktighetsmått i övrigt för att förebygga och hindra fort-
satt uttransport av metall från sedimenten.

Under de senaste 30 åren har SAFTs utsläpp till den inne hamnbassängen av processavloppsvatten och dagvatten innehållit åtskilliga tusen kilo metaller, däribland en ansenlig mängd kadmium. Även utsläpp från kommunens avloppssämningar har innehållit något tuntals kilo metaller, varav en mindre mängd kadmium. En icke obetydlig del av dessa utsläpp har sedan mottagits i de inne och yttre hamnbassängarna. SAFT och kommunen har som ansvariga för dessa utsläpp av avloppsvatten bidragit till föroringen och är därför ansvariga för efterbehandlingen av sedimenten i hamnbassängerna.

Vid en jämförelse mellan de metallutsläpp som kan ha skett från SAFT och avloppssamningsverket under den senaste 30-årsperioden och de omfattande metallföroringarna som finns i sedimenten står det klart att SAFTs och avloppssamningsverkets bidrag till föroringen är begränsad, dvs. dessa verksamheter har bidragit till föroringen endast i begränsad mån.

Det faktum att hamnbassängerna redan är så kraftigt förörenade av metaller bör dock inte leda till att ytterligare tillskott skall kunna ske utan att ansvar för efterbehandlingsåtgärder kan komma i fråga. Sammantaget kan SAFT och kommunen inte undgå ansvar för de efterbehandlingsåtgärder som erfordras.

Hur stor del av det totala ansvaret som kan vara rimligt att ålägga SAFT respektive kommunen är vanskligt att uttala sig om. Mot bakgrund av de mycket stora åtgärdskostnader som har diskuterats i detta ärende är det inte möjligt att ange någon kvotdel eller motsvarande som skälig del av efterbehandlingsåtgärderna. Tillsynsmyndigheten får i stället bestämma ett belopp som i någon mån kan svara mot verksamhetens bidrag till föroringen. Vad kostar det att ta hand om sediment från hamnbassängerna innehållande den mängd metaller som motsvarar SAFTs respektive kommunens utsläpp i hamnbassängen och som kan beräknas ha sedan mottagits under de 30 senaste åren?

Frågan om efterbehandling har inte behandlats i SAFTs respektive kommunens tillstånd enligt miljöskyddslagen. Tillståndets rättskraft får

9 Rekommendationer

Resultatet av utförda utredningar visar att Oskarshamns hamnbassäng bör saneras för att minska läckaget av metaller till Kalmar sund. Utförda utredningar pekar även på att det huvudförslag till efterbehandlingsåtgärd som presenterats i kapitel 6.3 verkliga också bör ses som ett huvudalternativ då metallläckaget drastiskt minskas efter genomförandet.

Det är dock möjligt att detta alternativ inte är det mest optimala för att på det mest kostnadseffektiva sättet minska utläckaget av metaller till Kalmar sund. Det kan inte uteslutas att det är möjligt att genom ytterligare undersökningar minimera åtgärderna i hamnbassängen och ändå nå ett fullgott resultat med avseende på metallläckaget till Kalmar sund.

Detta arbete kan dock enligt vår mening ingå i en detaljprojektering av föreslaget huvudalternativ till efterbehandlingsåtgärd och bör startas omgående tillsammans med framtagandet av en tillståndsansökan till miljödomstolen.
10 Referenser

Projektets delrapporter under Etapp 1-3

- Huvudstudie för sanering av bottensediment i Oskarshamns hamn, samt orienterande markundersökningar i upplagsområden, kajer och före detta industriområden. *VBB VIAK, 1996-10-29.*
- Beräkning av vattenutbyte i Oskarshamns hamnbassäng under hela 1999. *SMHI, 2000-05-25*
Modellering av metalltransporten i Oskarshamns hamn, Simulering av åtgärdsalternativ. *Kemakta, 2000-07-06.*

Övriga referenser

- Samordnad kustvattenkontroll i Kalmar län. 5-årsrapport med resultat till och med 1999. *SMHI Rapport Nr.38, 2000 (förhandskopla).*

11 Bilagor

- **Bilaga 1** | Områdesindelning i hamnbassängen
- **Bilaga 2** | Föroreningsklassning
- **Bilaga 3** | Provtagningspunkter samt Flödestvärsnitt
- **Bilaga 4** | VBB VIAKs åtgärdsförslag
- **Bilaga 5** | Kemaktas modellindelning samt simuleringsfall

VBB VIAK AB
Stockholm / Vatten & Miljö

Ola Lindstrand
Ann-Charlotte Carlsson
Oskarshamns hamn, kartering av sediment

SCANDIACONSULT

Kapeligränd 7
Box 4325
102 65 STOCKHOLM
Tel: 08-615 60 00
Fax: 08-702 19 34

Områdesindelning av Oskarshamns hamn

2000-01-31

SKALA 1:10000

Sauer

Omraden
A Stor påverkan av punktkälla. Klass 2
B Mycket stor påverkan av punktkälla. Klass 1
C Stor påverkan av punktkälla. Klass 2
D Trolig påverkan av punktkälla. Klass 3
Bilaga 3:2

Provtagningspunkt F6
Muddring
Ev. muddring
Ny kajkant
Täckning
Modellering av Strömförhållande
Utfyllnad av delområde
Ingen åtgärd
Deponi alt. den kommunala deponin
Bilaga 5
Kemaktas modellindelning samt simuleringsfall

Modellindelning av hamnen i 13 delområden. Utloade till hav sker från område 12, 8 och 9 (från den senare mot både nordost och sydost).

- Nollalternativet: inga åtgärder sker (dagens situation).
- Fall A: Område 1, 5 och 7 täcks. Område 4, 6 och delar av 8 muddras.
- Fall B: Område 1, 5 och 7 täcks. Område 4, 6 och delar av 8 muddras. Område 3 muddras.
- Fall C: Område 1 täcks. Område 4, 6 och delar av 8 muddras. Område 5 och 7 muddras.
- Fall D1: Övertäckning av område 1.
- Fall D2: Övertäckning av område 5 och 7
- Fall D3: Muddring av område 4 och 6
- Fall D4: Muddring av område 4, 6 och 3
- Fall D5: Muddring av område 3-7
- Fall D6: Åtgärd D1, D2 och D4 genomförs
- Fall D7: Åtgärd D1 och D5 genomförs